Scisne?

Глава 10. Уши / Внутренняя рыба. История человеческого тела с древнейших времен до наших дней

Нил Шубин

Комментарии: 0
<<< |1|…|8|9|10|11|12|13|14|15|16|17| >>>

Глава 10. Уши

Того, кто заглянет поглубже в ухо, чтобы увидеть, как устроен наш орган слуха, ждет разочарование. Самые интересные структуры этого аппарата скрыты глубоко внутри черепа, за костяной стенкой. Добраться до этих структур можно только вскрыв череп, удалив мозг, а затем еще и взломав саму костяную стенку. Если вам повезет или если вы мастерски умеете это делать, то вашим глазам предстанет удивительная структура — внутреннее ухо. На первый взгляд оно напоминает маленькую улитку вроде тех, что можно найти в пруду.

Выглядит она, быть может, неброско, но при ближайшем рассмотрении оказывается сложнейшим устройством, напоминающим самые хитроумные изобретения человека. Когда до нас долетают звуки, они попадают в воронку ушной раковины (которую мы обычно и называем ухом). По наружному слуховому проходу они достигают барабанной перепонки и вызывают ее колебания. Барабанная перепонка соединена с тремя миниатюрными косточками, которые колеблются вслед за ней. Одна из этих косточек соединяется чем-то вроде поршня со структурой, похожей на улитку. Сотрясение барабанной перепонки заставляет этот поршень ходить взад-вперед. В результате внутри улитки взад-вперед движется особое желеобразное вещество. Движения этого вещества воспринимаются нервными клетками, которые посылают в мозг сигналы, а мозг интерпретирует эти сигналы как звук. Когда вы в следующий раз будете слушать музыку, только представьте себе всю свистопляску, которая при этом происходит у вас в голове.

Во всей этой системе выделяют три части: наружное, среднее и внутреннее ухо. Наружное ухо — это та часть органа слуха, которая видна снаружи. Среднее ухо — это три миниатюрные косточки. Наконец, внутреннее ухо состоит из чувствительных нервных клеток, желеобразного вещества и тканей, которые их окружают. Рассмотрев по отдельности эти три компонента, мы можем разобраться в наших органах слуха, их происхождении и развитии.

Наше ухо состоит из трех частей: наружного, среднего и внутреннего уха. Самая древняя из них — внутреннее ухо. Оно управляет нервными импульсами, посылаемыми от уха в мозг.
Наше ухо состоит из трех частей: наружного, среднего и внутреннего уха. Самая древняя из них — внутреннее ухо. Оно управляет нервными импульсами, посылаемыми от уха в мозг.

Ушная раковина, которую мы обычно и называем ухом, досталась нашим предкам в ходе эволюции сравнительно недавно. В этом можно убедиться, посетив зоопарк или аквариум. У кого из акул, костных рыб, амфибий и рептилий есть ушные раковины? Эта структура свойственна только млекопитающим. У некоторых амфибий и рептилий наружное ухо хорошо заметно, но ушной раковины у них нет, а наружное ухо обычно выглядит как перепонка вроде той, что натянута на барабане.

Тонкая и глубокая связь, существующая между нами и рыбами (как хрящевыми, акулами и скатами, так и костными) откроется нам лишь тогда, когда мы рассмотрим структуры, расположенные в глубине ушей. На первый взгляд это может показаться странным — искать связи между людьми и акулами в ушах, особенно если иметь в виду, что у акул их нет. Но они там есть, и мы их найдем. Давайте начнем со слуховых косточек.

^

Среднее ухо — три слуховые косточки

Млекопитающие — существа особенные. Волосяной покров и молочные железы отличают нас, млекопитающих, от всех других живых организмов. Но многие, пожалуй, удивятся, если узнают, что структуры, расположенные в глубине уха, тоже относятся к важным отличительным признакам млекопитающих. Таких косточек, как в нашем среднем ухе, нет ни у одного другого животного: у млекопитающих этих косточек три, в то время как у амфибий и рептилий всего одна. А у рыб этих косточек вовсе нет. Как же тогда возникли косточки нашего среднего уха?

Немного анатомии: напомню, что эти три косточки называются молоточек, наковальня и стремечко. Как уже было сказано, они развиваются из жаберных дуг: молоточек и наковальня — из первой дуги, а стремечко — из второй. Вот с этого и начнется наш рассказ.

В 1837 году немецкий анатом Карл Рейхерт изучал эмбрионы млекопитающих и рептилий, чтобы разобраться в том, как формируется череп. Он прослеживал пути развития структур жаберных дуг разных видов, чтобы понять, где они оказываются в итоге в черепах разных животных. Результатом продолжительных исследований стал очень странный вывод: две из трех слуховых косточек млекопитающих соответствуют фрагментам нижней челюсти рептилий. Рейхерт не верил своим глазам! Описывая это открытие в своей монографии, он не скрывал своего удивления и восторга. Когда он доходит до сравнения слуховых косточек и костей челюсти, обычный суховатый стиль анатомических описаний XIX века уступает место стилю куда более эмоциональному, показывающему, как поразило Рейхерта это открытие. Из полученных им результатов следовал неизбежный вывод: та же жаберная дуга, которая у рептилий формирует часть челюсти, у млекопитающих формирует слуховые косточки. Рейхерт выдвинул тезис, в который он сам с трудом верил, что структуры среднего уха млекопитающих соответствуют структурам челюсти рептилий. Ситуация будет выглядеть сложнее, если мы вспомним, что Рейхерт пришел к этому выводу на двадцать с лишним лет раньше, чем прозвучало положение Дарвина о едином генеалогическом древе всего живого (это случилось в 1859 году). Какой смысл в утверждении, что разные структуры у двух разных групп животных "соответствуют" друг другу, без представления об эволюции?

Намного позже, в 1910 и 1912 годах, другой немецкий анатом, Эрнст Гаупп, продолжил дело Рейхерта и опубликовал результаты своих исчерпывающих исследований по эмбриологии органов слуха млекопитающих. Гаупп представил больше деталей, а кроме того, учитывая, в какое время он работал, смог интерпретировать открытие Рейхерта в рамках представлений об эволюции. Вот к каким выводам он пришел: три косточки среднего уха демонстрируют связь между рептилиями и млекопитающими. Единственная косточка среднего уха рептилий соответствует стремечку млекопитающих — и то и другое развивается из второй жаберной дуги. Но по-настоящему ошеломляющее открытие состояло не в этом, а в том, что две другие косточки среднего уха млекопитающих — молоточек и наковальня — развились из косточек, расположенных в задней части челюсти у рептилий. Если это действительно так, то ископаемые остатки должны показывать, как косточки перешли из челюсти в среднее ухо в процессе возникновения млекопитающих. Но Гаупп, к сожалению, изучал лишь современных животных и не был готов вполне оценить роль, которую могли сыграть ископаемые в его теории.

Начиная с сороковых годов XIX века в Южной Африке и России стали добывать ископаемые остатки животных неизвестной ранее группы. Было обнаружено немало находок хорошей сохранности — целые скелеты существ размером с собаку. Вскоре после того, как эти скелеты были обнаружены, многие их образцы упаковали в ящики и послали в Лондон Ричарду Оуэну — на определение и изучение. Оуэн обнаружил, что у этих существ была поразительная смесь признаков разных животных. Одни структуры их скелетов напоминали рептилий. В то же время другие, особенно зубы, были скорее как у млекопитающих. Причем это были не какие-то единичные находки. Во многих местонахождениях эти похожие на млекопитающих рептилии были самыми многочисленными ископаемыми. Они были не только многочисленны, но и довольно разнообразны. Уже после исследований Оуэна такие рептилии были обнаружены и в других районах Земли, в нескольких слоях горных пород, соответствующих разным периодам земной истории. Эти находки образовали прекрасный переходный ряд, ведущий от рептилий к млекопитающим.

До 1913 года эмбриологи и палеонтологи работали в изоляции друг от друга. Но этот год был знаменателен тем, что американский палеонтолог Уильям Кинг Грегори, сотрудник Американского музея естественной истории в Нью-Йорке, обратил внимание на связь между эмбрионами, которыми занимался Гаупп, и обнаруженными в Африке ископаемыми. У самой "рептильной" из всех похожих на млекопитающих рептилий в среднем ухе была всего одна косточка, а ее челюсть, как и у других рептилий, состояла из нескольких косточек. Но, изучая ряд рептилий, все более близких к млекопитающим, Грегори обнаружил нечто весьма примечательное — то, что глубоко поразило бы Рейхерта, будь он жив: последовательный ряд форм, однозначно свидетельствующий о том, что кости задней части челюсти у похожих на млекопитающих рептилий постепенно уменьшались и смещались, пока, наконец, у их потомков, млекопитающих, не заняли свое место в среднем ухе. Молоточек и наковальня действительно развились из костей челюсти! То, что Рейхерт обнаружил у эмбрионов, давным-давно покоилось в земле в ископаемом виде, дожидаясь своего первооткрывателя.

Зачем же млекопитающим понадобилось иметь три косточки в среднем ухе? Система этих трех косточек позволяет нам слышать звуки более высокой частоты, чем способны слышать те животные, у которых косточка в среднем ухе всего одна. Возникновение млекопитающих было сопряжено с развитием не только прикуса, о чем мы говорили в четвертой главе, но и более острого слуха. Причем улучшить слух млекопитающим помогло не появление новых косточек, а приспособление старых к выполнению новых функций. Кости, которые изначально служили для того, чтобы помогать рептилиям кусаться, теперь помогают млекопитающим слышать.

Вот, оказывается, откуда возникли молоточек и наковальня. Но откуда, в свою очередь, появилось стремечко?

Если бы я просто показал вам, как устроены взрослый человек и акула, вы бы ни за что не догадались, что эта крошечная косточка в глубине человеческого уха соответствует большому хрящу в верхней челюсти морской хищницы. Однако, изучая развитие человека и акулы, мы убеждаемся, что это именно так. Стремечко представляет собой видоизмененную скелетную структуру второй жаберной дуги подобно этому акульему хрящу, который называют подвеском, или гиомандибуляре. Но подвесок — не косточка среднего уха, ведь акулы не имеют ушей. У наших водных родственников — хрящевых и костных рыб — эта структура связывает верхнюю челюсть с черепной коробкой. Несмотря на очевидную разницу в строении и функциях стремечка и подвеска, их родство проявляется не только в сходном происхождении, но и в том, что их обслуживают одни и те же нервы. Основной нерв, ведущий к обеим этим структурам, — это нерв второй дуги, то есть лицевой нерв. Итак, перед нами случай, когда две совершенно разных скелетных структуры имеют сходное происхождение в процессе развития эмбриона и сходную систему иннервации. Как это можно объяснить?

И вновь нам стоит обратиться к ископаемым. Если мы проследим изменения подвеска от хрящевых рыб до таких существ, как тиктаалик, и дальше, до амфибий, мы убедимся, что он постепенно уменьшается и наконец отделяется от верхней челюсти и становится частью органа слуха. При этом изменяется и название этой структуры: когда она большая и поддерживает челюсть, ее называют подвеском, а когда маленькая и участвует в работе уха — стремечком. Переход от подвеска к стремечку совершился, когда рыбы вышли на сушу. Чтобы слышать в воде, нужны совсем другие органы, чем на суше. Небольшие размеры и положение стремечка как нельзя лучше позволяют ему улавливать происходящие в воздухе мелкие вибрации. А возникла эта структура за счет видоизменения устройства верхней челюсти.

Мы можем проследить историю происхождения наших слуховых косточек из скелетных структур первой и второй жаберной дуг. История молоточка и наковальни (слева) показана начиная от древних рептилий, а история стремечка (справа) — начиная от еще более древних хрящевых рыб.
Мы можем проследить историю происхождения наших слуховых косточек из скелетных структур первой и второй жаберной дуг. История молоточка и наковальни (слева) показана начиная от древних рептилий, а история стремечка (справа) — начиная от еще более древних хрящевых рыб.

В нашем среднем ухе хранятся следы двух важнейших изменений в истории жизни на Земле. Возникновение стремечка — его развитие из подвеска верхней челюсти — было вызвано переходом рыб к жизни на суше. В свою очередь, молоточек и наковальня возникли в ходе превращения древних рептилий, у которых эти структуры входили в состав нижней челюсти, в млекопитающих, которым они помогают слышать.

Давайте заглянем в ухо глубже — во внутреннее ухо.

^

Внутреннее ухо — движение желе и колебание волосков

Представьте себе, что мы заходим в слуховой проход, проходим сквозь барабанную перепонку, мимо трех косточек среднего уха и оказываемся глубоко внутри черепа. Здесь расположено внутреннее ухо — заполненные желеобразным веществом трубки и полости. У людей, как и у других млекопитающих, эта структура напоминает улитку с завитой раковиной. Ее характерный облик сразу бросается в глаза, когда мы препарируем тела на занятиях по анатомии.

Разные части внутреннего уха выполняют разные функции. Одна из них служит для слуха, другая — чтобы говорить нам, как наклонена у нас голова, а третья — чтобы мы чувствовали, как ускоряется или замедляется движение нашей головы. Выполнение всех этих функций осуществляется во внутреннем ухе довольно сходным образом.

Все части внутреннего уха заполнены желеобразным веществом, которое может менять свое положение. Специальные нервные клетки посылают в это вещество свои окончания. Когда это вещество движется, перетекая внутри полостей, волоски на концах нервных клеток наклоняются как от ветра. Когда они наклоняются, нервные клетки посылают в мозг электрические импульсы, и мозг получает информацию о звуках, а также о положении и ускорении головы.

Каждый раз, когда мы наклоняем голову, во внутреннем ухе с места сдвигаются крошечные камушки, лежащие на оболочке заполненной желеобразным веществом полости. Перетекающее вещество воздействует на нервные окончания внутри этой полости, и нервы посылают в мозг импульсы, говорящие ему, что голова наклонена.
Каждый раз, когда мы наклоняем голову, во внутреннем ухе с места сдвигаются крошечные камушки, лежащие на оболочке заполненной желеобразным веществом полости. Перетекающее вещество воздействует на нервные окончания внутри этой полости, и нервы посылают в мозг импульсы, говорящие ему, что голова наклонена.

Чтобы понять принцип работы структуры, которая позволяет нам чувствовать положение головы в пространстве, представьте себе рождественскую игрушку — полусферу, заполненную жидкостью, в которой плавают "снежинки". Эта полусфера сделана из пластика, а заполняет ее вязкая жидкость, в которой, если ее встряхнуть, начинается метель из пластиковых снежинок. Теперь представьте себе такую же полусферу, только сделанную не из твердого, а из эластичного вещества. Если резко наклонить ее, жидкость в ней задвижется, а затем "снежинки" осядут, но не на дно, а на бок. Именно это, только в сильно уменьшенном виде, и происходит у нас во внутреннем ухе, когда мы наклоняем голову. Во внутреннем ухе имеется полость с желеобразным веществом, внутрь которой выходят нервные окончания. Перетекание этого вещества и позволяет нам чувствовать, в каком положении находится наша голова: когда голова наклоняется, вещество перетекает в соответствующую сторону, и в мозг посылаются импульсы.

Дополнительную чувствительность этой системе придают лежащие на эластичной оболочке полости крошечные камушки. Когда мы наклоняем голову, перекатывающиеся в жидкой среде камушки давят на оболочку и усиливают движение заключенного в эту оболочку желеобразного вещества. За счет этого вся система становится еще более чувствительной и позволяет нам воспринимать даже небольшие изменения положения головы. Стоит нам едва наклонить голову, как внутри черепа уже перекатываются крошечные камушки.

Можно себе представить, как непросто жить в космосе. Наши органы чувств настроены на работу при постоянном действии земного тяготения, а не на околоземной орбите, где притяжение Земли компенсируется движением космического аппарата и совершенно не чувствуется. Неподготовленному человеку в таких условиях становится плохо, потому что глаза не позволяют понять, где верх и где низ, а чувствительные структуры внутреннего уха оказываются совершенно сбиты столку. Именно поэтому космическая болезнь — серьезная проблема для тех, кто работает на орбитальных аппаратах.

Ускорение мы воспринимаем за счет еще одной структуры внутреннего уха, связанной с остальными двумя. Она состоит из трех полукруглых трубочек, тоже заполненных желеобразным веществом. Всякий раз, когда мы ускоряемся или тормозим, вещество внутри этих трубочек смещается, наклоняя нервные окончания и вызывая импульсы, идущие в мозг.

Всякий раз, когда мы ускоряемся или замедляемся, это вызывает перетекание желеобразного вещества в полукруглых трубочках внутреннего уха. Движения этого вещества вызывают нервные импульсы, посылаемые в мозг.
Всякий раз, когда мы ускоряемся или замедляемся, это вызывает перетекание желеобразного вещества в полукруглых трубочках внутреннего уха. Движения этого вещества вызывают нервные импульсы, посылаемые в мозг.

Вся система восприятия положения и ускорения тела связана у нас с глазными мышцами. Движение глаза управляется шестью небольшими мышцами, прикрепленными к стенкам глазного яблока. Их сокращение позволяет двигать глазами вверх, вниз, влево и вправо. Мы можем произвольно двигать глазами, определенным образом сокращая эти мышцы, когда хотим посмотреть в какую-нибудь сторону, но самое необычное их свойство — это способность к непроизвольной работе. Они все время управляют нашими глазами, даже когда мы совершенно об этом не думаем.

Чтобы оценить чувствительность связи этих мышц с глазами, подвигайте головой в ту и в другую сторону, не отрывая взгляда от этой страницы. Двигая головой, смотрите пристально в одну и ту же точку.

Что при этом происходит? Голова движется, а положение глаз остается почти неизменным. Такие движения для нас так привычны, что мы воспринимаем их как что-то простое, само собой разумеющееся, но в действительности они необычайно сложны. Каждая из шести мышц, управляющих каждым глазом, чутко отвечает на любые движения головы. Расположенные внутри головы чувствительные структуры, о которых речь пойдет ниже, непрерывно регистрируют направление и скорость ее движений. От этих структур идут сигналы в мозг, который в ответ на них посылает другие сигналы, вызывающие сокращения глазных мышц. Вспомните об этом, когда в следующий раз будете пристально смотреть на что-нибудь, двигая при этом головой. Эта сложная система иногда может давать сбои, по которым можно многое сказать о том, какими нарушениями работы организма они вызваны.

Чтобы разобраться в связях между глазами и внутренним ухом, проще всего вызывать разные нарушения работы этих связей и смотреть, какой эффект они произведут. Один из самых распространенных способов вызывать такие нарушения — чрезмерное потребление алкоголя. Когда мы выпиваем много этилового спирта, мы говорим и делаем глупости, потому что спирт ослабляет работу наших внутренних ограничителей. А если мы выпиваем не просто много, а очень много, у нас к тому же начинает кружиться голова. Такое головокружение часто предвещает тяжелое утро — нас ждет похмелье, симптомами которого будут новые головокружения, тошнота и головная боль.

Когда мы выпиваем лишнего, в крови у нас оказывается много этилового спирта, но в вещество, заполняющее полости и трубки внутреннего уха, спирт попадает не сразу. Лишь некоторое время спустя он просачивается из кровотока в разные органы и оказывается в том числе в желеобразном веществе внутреннего уха. Алкоголь легче, чем это вещество, поэтому результат оказывается примерно таким же, как если налить немного спирта в стакан с оливковым маслом. В масле при этом образуются беспорядочные завихрения, и то же происходит у нас во внутреннем ухе. Эти беспорядочные завихрения вызывают хаос в организме невоздержанного человека. Волоски на концах чувствительных клеток колеблются, и мозгу кажется, что тело находится в движении. Но оно не движется — оно покоится на полу или на стойке бара. Мозг оказывается обманут.

Зрение тоже не остается в стороне. Мозгу кажется, что тело вращается, и он посылает соответствующие сигналы глазным мышцам. Глаза начинают съезжать в одну сторону (обычно вправо), когда мы пытаемся удержать их на чем-нибудь, двигая головой. Если открыть глаз мертвецки пьяного человека, можно увидеть характерные подергивания, так называемый нистагм. Этот симптом хорошо знаком полицейским, которые нередко проверяют на него водителей, остановленных за неаккуратное вождение.

При тяжелом похмелье происходит несколько иное. На следующий день после попойки печень уже удалила алкоголь из крови. Она делает это на удивление быстро и даже слишком быстро, потому что в полостях и трубочках внутреннего уха алкоголь еще остается. Он постепенно просачивается из внутреннего уха обратно в кровоток и при этом снова взбаламучивает желеобразное вещество. Если взять на следующее утро того же вусмерть напившегося человека, глаза которого вечером непроизвольно дергались, и осмотреть его во время похмелья, может оказаться, что глаза у него снова дергаются, только в другом направлении.

Всем этим мы обязаны нашим далеким предкам — рыбам. Если вы когда-нибудь ловили форель, вы наверняка сталкивались с работой органа, от которого, по-видимому, и происходит наше внутреннее ухо. Рыбакам хорошо известно, что форель держится лишь в определенных участках русла — обычно там, где она может особенно успешно добывать себе пищу, при этом избегая хищников. Часто это затененные участки, где течение образует водовороты. Крупная рыба особенно охотно скрывается за большими камнями или поваленными стволами. У форели, как и у всех рыб, есть механизм, позволяющий чувствовать скорость и направление движения окружающей воды, во многом похожий на механизм работы наших органов осязания.

В коже и костях рыб располагаются небольшие чувствительные структуры, идущие рядами вдоль тела от головы до хвоста, — так называемый орган боковой линии. Эти структуры образуют небольшие пучки, из которых выходят миниатюрные волосовидные выросты. Выросты каждого пучка выступают в заполненную желеобразным веществом полость. Вспомним еще раз рождественскую игрушку — полусферу, заполненную вязкой жидкостью. Полости органа боковой линии тоже напоминают такую игрушку, только снабженную смотрящими внутрь чувствительными волосками. Когда вода обтекает тело рыбы, она давит на стенки этих полостей, заставляя наполняющее их вещество двигаться и наклоняя волосовидные выросты нервных клеток. Эти клетки, подобно чувствительным клеткам нашего внутреннего уха, посылают в мозг импульсы, которые дают рыбе возможность чувствовать, как движется окружающая ее вода. Чувствовать направление движения воды могут и акулы, и костные рыбы, а некоторые акулы ощущают даже небольшие завихрения в окружающей воде, вызываемые, например, другими рыбами, проплывающими мимо. Мы пользовались системой, очень похожей на эту, когда пристально смотрели в одну точку, двигая головой, и видели нарушения ее работы, когда открывали глаза в стельку пьяному человеку. Если бы наши общие с акулами и форелями предки использовали в органах боковой линии какое-нибудь другое желеобразное вещество, в котором не возникали бы завихрения при добавлении алкоголя, у нас никогда не кружилась бы голова от употребления спиртных напитков.

Вполне вероятно, что наше внутреннее ухо и рыбий орган боковой линии представляют собой варианты одной и той же структуры. Оба эти органа формируются в ходе развития из одной и той же эмбриональной ткани и очень похожи по внутреннему строению. Но что возникло раньше, боковая линия или внутреннее ухо? На этот счет у нас нет однозначных данных. Если посмотреть на некоторых древнейших обладавших головой ископаемых, которые жили около 500 миллионов лет назад, мы увидим в их плотных защитных покровах небольшие ямки, которые заставляют нас предположить, что у них уже был орган боковой линии. К сожалению, мы ничего не знаем о внутреннем ухе этих ископаемых, потому что у нас нет образцов, в которых сохранилась бы эта часть головы. До тех пор пока у нас не появится новых данных, нам остается альтернатива: либо внутреннее ухо развилось из органа боковой линии, либо, наоборот, боковая линия развилась из внутреннего уха. В любом случае перед нами пример работы принципа, проявления которого мы уже наблюдали в других структурах тела: органы нередко возникают для выполнения одной функции, а затем перестраиваются для выполнения совсем другой — или многих других.

Наше внутреннее ухо разрослось по сравнению с рыбьим. Как и у всех млекопитающих, часть внутреннего уха, отвечающая за слух, у нас очень большая и завитая, как улитка. У более примитивных организмов, таких как амфибии и рептилии, внутреннее ухо устроено проще и не завито в подобие улитки. Очевидно, наши прародители — древние млекопитающие — выработали новый, более эффективный орган слуха, чем был у их предков-рептилий. То же относится к структурам, позволяющим чувствовать ускорение. В нашем внутреннем ухе есть три трубочки (полукружных канала), ответственные за восприятие ускорения. Они расположены в трех плоскостях, лежащих под прямым углом друг к другу, и это позволяет нам чувствовать, как мы движемся в трехмерном пространстве. Древнейшее известное позвоночное, обладавшее такими каналами, похожее на миксину бесчелюстное, имело лишь по одному каналу в каждом ухе. У более поздних организмов таких каналов было уже два. И наконец, у большинства современных рыб, как и у других позвоночных, полукружных каналов три, как у нас.

Как мы убедились, наше внутреннее ухо имеет долгую историю, начавшуюся во времена древнейших позвоночных, еще до появления рыб. Примечательно, что нейроны (нервные клетки), окончания которых погружены в желеобразное вещество в нашем внутреннем ухе, еще древнее, чем само внутреннее ухо.

Эти клетки, так называемые волосковидные, обладают признаками, не свойственными другим нейронам. Похожие на волоски выросты каждой из таких клеток, включающие один длинный "волосок" и несколько коротких, и сами эти клетки и в нашем внутреннем ухе, и в рыбьем органе боковой линии строго ориентированы. В последнее время были предприняты поиски таких клеток у других животных, и их удалось обнаружить не только у организмов, не имеющих таких развитых органов чувств, как у нас, но и у организмов, не имеющих даже головы. Эти клетки есть у ланцетников, с которыми мы познакомились в пятой главе. У них нет ни ушей, ни глаз, ни черепа.

Стало быть, волосковидные клетки появились задолго до того, как возникли наши уши, и первоначально выполняли другие функции.

Разумеется, все это записано в наших генах. Если у человека или мыши происходит мутация, выключающая ген Pax 2, полноценное внутреннее ухо не развивается.

Примитивный вариант одной из структур нашего внутреннего уха можно найти под кожей у рыб. Небольшие полости органа боковой линии расположены вдоль всего тела, от головы до хвоста. Изменения потоков окружающей воды деформируют эти полости, и расположенные в них чувствительные клетки посылают в мозг информацию об этих изменениях.
Примитивный вариант одной из структур нашего внутреннего уха можно найти под кожей у рыб. Небольшие полости органа боковой линии расположены вдоль всего тела, от головы до хвоста. Изменения потоков окружающей воды деформируют эти полости, и расположенные в них чувствительные клетки посылают в мозг информацию об этих изменениях.

Ген Pax 2 работает у эмбриона в том районе, где закладываются уши, и, вероятно, запускает цепную реакцию включения и выключения генов, приводящую к образованию нашего внутреннего уха. Если поискать этот ген у более примитивных животных, мы обнаружим, что он работает в голове эмбриона, а также, представьте себе, в зачатках органа боковой линии. За головокружение у пьяных людей и за чувство воды у рыб отвечают одни и те же гены, свидетельствуя о том, что у этих разных чувств общая история.

 

^

Медузы и происхождение глаз и ушей

Подобно ответственному за развитие глаз гену Pax 6, который мы уже обсуждали, Pax 2, в свою очередь, — один из главных генов, необходимых для развития ушей. Примечательно, что эти два гена довольно похожи. Это говорит о том, что глаза и уши, возможно, происходят от одних и тех же древнейших структур.

Здесь нужно рассказать о кубомедузах. О них хорошо знают те, кто регулярно плавает в море у берегов Австралии, потому что эти медузы обладают необычайно сильным ядом. Они отличаются от большинства медуз тем, что имеют глаза — больше двадцати штук. Большинство из этих глаз — простые ямки, рассеянные в покровах. Но несколько глаз на удивление похожи на наши: в них есть что-то вроде роговицы и даже хрусталика, а также похожая на нашу система иннервации.

У медуз нет ни Pax 6, ни Pax 2 — эти гены возникли позже, чем медузы. Но у кубомедуз мы находим нечто весьма примечательное. Ген, который отвечает у них за формирование глаз, не является ни геном Pax 6, ни геном Pax 2, но представляет собой как бы мозаичную смесь обоих этих генов. Иными словами, этот ген выглядит как примитивный вариант генов Pax 6 и Pax 2, свойственных другим животным.

Важнейшие гены, управляющие развитием наших глаз и ушей, у более примитивных организмов — медуз — соответствуют единственному гену. Вы, быть может, спросите: "Ну и что?" Но это довольно важный вывод. Древняя связь, которую мы обнаружили между генами ушей и глаз, помогает разобраться во многом из того, с чем сталкиваются в своей практике современные врачи: многие из врожденных человеческих дефектов сказываются на обоих этих органах — и на глазах, и на ушах. И все это отражает нашу глубокую связь с такими существами, как ядовитая морская медуза.
<<< |1|…|8|9|10|11|12|13|14|15|16|17| >>>
Комментарии: 0