Когда топология стала самостоятельным разделом математики? В чем различия между топологией и геометрией? Какое применение топология нашла в физике? И каковы перспективы исследований в этой области? Об этом рассказывает доктор физико-математических наук Сергей Ландо.
«На рубеже XIX-XX веков от геометрии отделилась совершенно новая область – топология, которая, собственно, и определила развитие математики XX века. В топологию ушли те геометрические структуры, которые оказались наиболее фундаментальными, наиболее простыми и наиболее связанными с физикой XX века. Заслуга в этом принадлежит в первую очередь великому французскому математику Анри Пуанкаре, который выделил топологические структуры и который разработал язык, чтобы их описывать. Если мы будем говорить о разнице между геометрией и топологией, то в геометрии главную роль играет расстояние.»
«Топология стала одной из основных отраслей математики в XX веке. Не в последнюю очередь потому, что она нашла своё применение в физике. Как раз на рубеже веков физика перестала быть линейной. Выяснилось, что ньютоновский мир, в котором наше пространство одинаково протяжено и равномерно по всем направлениям, не является достаточно точным инструментом для описания реальности. И в том, в чём, опять-таки, принял решающее участие Пуанкаре, сделало наш мир изогнутым, скрученным. И вот, для описания не плоского мира топология оказалась самым подходящим инструментом»
«Если бы наша планета не была круглой, и мы хотели бы узнать истинную форму нашей планеты, истинную форму Земли, то мы бы справились с этой задачей. Откуда мы знаем вообще, что Земля круглая? Из простейших астрономических наблюдений, которые просто описывают тень от Земли во время лунного затмения. Мы видим, что тень, отбрасываемая нашей планетой, круглая. И делаем отсюда заключение, что круглой является сама Земля. Если бы мы находились в более сложных условиях, у нас бы были простые топологические средства для понимания того, на какой планете мы живём. Для этого достаточно было бы просто разбить Землю на треугольники, триангулировать её и подсчитать количество треугольников, участвующих в разбиении, количество их вершин и их сторон. И тогда знаменитая формула Эйлера, полученная им задолго до результатов Пуанкаре, позволила бы сказать ту топологическую природу поверхности планеты, на которой мы живём.»
Сергей Ландо, доктор физико-математических наук, декан факультета математики ВШЭ.
Как физика связана с теорией узлов? Как математики доказали, что есть универсальные алгоритмы развязывающие узел? Что такое тривиальный узел и как можно представить его диаграммой? Об этом рассказывает сотрудник Лаборатории геометрических методов математической физики имени Н.Н. Боголюбова мехмата МГУ Александра Скрипченко.
Мы сейчас знаем о строении Вселенной примерно столько же, сколько древние люди знали о поверхности Земли. Точнее, мы знаем, что небольшая часть Вселенной, доступная нашим наблюдениям, устроена так же, как небольшая часть трёхмерного евклидова пространства. Иначе говоря, мы живём на трёхмерном многообразии (3-многообразии).
Этот фильм — первая серьезная попытка на телевидении разобраться, какие бури движут этим человеком и что именно он сделал для русской и мировой науки. А вывод, почему же Перельман не взял свой миллион, зритель уже сделает сам...
Встряхивание проводов внутри специальной коробки показало, что узлы образуются за считанные секунды. Затем ученые проанализировали узлы с помощью математической теории. В результате они обнаружили 120 разных типов узлов. В каждом из 3 415 экспериментов провод образовывал как минимум 11 узлов.
Последним великим достижением чистой математики называют доказательство петербуржцем Григорием Перельманом в 2002–2003 годах гипотезы Пуанкаре, высказанной в 1904 году и гласящей: «всякое связное, односвязное, компактное трехмерное многообразие без края гомеоморфно сфере S3». В этой фразе имеется несколько терминов, которые я постараюсь объяснить так, чтобы их общий смысл стал понятен нематематикам (я предполагаю, что читатель закончил среднюю школу и кое-что из школьной математики еще помнит).
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной. Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Игра эта давно приобрела массовый характер и стала неотъемлемой частью современной жизни. И хотя лотерея всё больше расширяет свои возможности, многие люди по-прежнему видят в ней лишь способ обогащения. Пусть и не бесплатный и не надёжный. С другой стороны, как заметил один из героев Джека Лондона, в азартной игре нельзя не считаться с фактами — людям иногда везёт.
Что из себя представляет знаменитое число Пи? Можно ли точно высчитать его значение? Где оно применяется? Ответы на все эти вопросы раскрыты в короткометражном ролике от TED-ed.