Предисловие / Принцесса или тигр?
Предисловие
Из множества занятных писем, присланных мне после выхода в свет моей первой книги логических головоломок (названия ее я никак не упомню!), одно принадлежало десятилетнему сыну довольно известного математика, с которым я в свое время учился в школе. В письме предлагалась весьма изящная и оригинальная задача, навеянная некоторыми задачками из моей книжки, которую мальчик прочитал взахлеб. Я сразу же позвонил отцу, решив поздравить его с таким умницей. Но тот, прежде чем позвать к телефону самого парнишку, стал заговорщически шептать в трубку: "Ему страшно нравится твоя книга! Но когда будешь с ним толковать, не проговорись, что эта штука называется математикой — в школе он ее просто ненавидит! Чуть заподозрит, что твоя книжка математическая, тут же забросит ее подальше».
Я вспомнил об этой истории потому, что она представляет собой иллюстрацию странного, но распространенного явления. Множество людей, с которыми я сталкивался, утверждали, что ненавидят математику, и в то же время с азартом накидывались на любую логическую или математическую задачу, которую я им подсовывал, стоило лишь облечь ее в форму занимательной головоломки. Я бы ничуть не удивился, если бы хорошие сборники головоломок оказались одним из лучших лекарств против так называемого «страха перед математикой». Более того, любой учебник математики вполне можно переписать в форме набора занимательных задач. Я иногда воображал, что бы произошло, если бы Евклид представил свои классические «Начала» именно в таком виде. Например, вместо того чтобы сформулировать в качестве теоремы утверждение о равенстве углов, лежащих в основании равнобедренного треугольника, а затем строго доказать эту теорему, Евклид начал бы так: «Задача. Дан треугольник с двумя равными сторонами. Всегда ли у него есть два равных угла? Если да, то почему, если нет, то тоже почему? (Решение смотри на странице такой-то.)» А потом и все остальные теоремы постарался бы изложить в таком же духе. Такая книжка вполне могла бы оказаться одним из самых популярных сборников задач в истории!
Вообще-то мои собственные сборники задач отличаются тем, что меня в первую очередь привлекают задачи, связанные с наиболее глубокими и важными результатами логики и математики. Так, истинной целью моей первой книги логических задач было желание дать широкому читателю хотя бы скромное представление о том, в чем же суть великой теоремы Геделя. Книжка, которую вы держите в руках сейчас, — следующий шаг в этом направлении. Многие факты и задачи из нее я использовал в одном из своих курсов лекций, озаглавленном «Головоломки и парадоксы». Тогда-то один из моих студентов заметил мне: «Знаете, профессор, ваша книга — особенно ее третья и четвертая части — читается прямо как какой-то математический роман. Ничего подобного я раньше не встречал!». Мне кажется, что слова «математический роман» в этом случае весьма уместны. Действительно, большая часть книги написана в форме художественного повествования. Поэтому ее вполне можно было бы назвать как-то вроде «Тайна сейфа из Монте-Карло» — ведь в последней части книги речь идет о расследовании, в процессе которого инспектор Крейг из Скотланд-Ярда пытается подобрать комбинацию цифр, позволяющую открыть замок одного из сейфов в Монте-Карло, и тем предотвратить катастрофу. Когда все его усилия вскрыть сейф оказываются безуспешными, инспектор возвращается в Лондон, где по счастливой случайности вновь сталкивается с блестящим и чудаковатым изобретателем цифровых кодирующих машин. Они приглашают еще и специалиста по математической логике, и вскоре все трое погружаются в глубокие воды потока, ведущего в самое сердце великого открытия Гёделя. Конечно же, замок сейфа из Монте-Карло оказывается «гёделевым», а его modus ореrandi
[1] прекрасно иллюстрирует фундаментальную идею Гёделя, влияние и результаты которой обнаруживаются во многих научных теориях, связанных с таким удивительным явлением, как процесс самовоспроизведения.
В конечном счете исследования Крейга и его друзей приводят к весьма примечательным математическим открытиям, не известным до настоящего времени ни ученому миру, ни тем более широкой публике, — это так называемые «законы Крейга» и «законы Фергюссона», которые впервые преданы гласности на страницах книги. Несомненно, они должны заинтересовать как любителей математики, так и логиков, лингвистов и специалистов по вычислительной технике.
Книгу эту я писал с огромным удовольствием; хотелось бы, чтобы с таким же удовольствием ее и читали. Собираюсь написать еще несколько книг в том же духе. Наконец, я хочу поблагодарить моего редактора Энн Клоуз и технического редактора Мелвина Розенталя за ту неоценимую помощь, которую они мне оказали.
Элка-Парк, штат Нью-Йорк
Рэймонд Смаллиан
Февраль 1982 г.
1.
Принцип работы (лат.).
Похожее
-
Мартин Гарднер

Математические фокусы - очень своеобразная форма демонстрации математических закономерностей. Этой скрытой математичностью и интересна книга Мартина Гарднера - сам автор не формулирует на языке математики закономерностей, лежащих в основе его экспериментов, ограничиваясь описанием действий показывающего, явных и тайных. Но читателю, знакомому с элементами школьной алгебры и геометрии, несомненно, доставит удовольствие самому восстановить по объяснениям автора соответствующую алгебраическую или геометрическую идею. Книга будет интересна многим читателям: юным участникам математических кружков, взрослым любителям математики, а может быть, тот или иной из описанных здесь экспериментов пробудит улыбку и у серьезного ученого в краткий момент отдыха от большой работы.
-

Как развивается научная модель в естественных науках? Накапливается житейский либо научный опыт, его вехи аккуратно формулируются в виде постулатов и образуют базу модели: набор утверждений, принимаемых всеми, кто работает в рамках этой модели.
-
Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.
-
Анатолий Вассерман
В 1930 году Курт Гедель доказал две теоремы, которые в переводе с математического языка на человеческий означают примерно следующее: Любая система аксиом, достаточно богатая, чтобы с ее помощью можно было определить арифметику, будет либо не полна, либо противоречива. Не полная система – это значит, что в системе можно сформулировать утверждение, которое средствами этой системы нельзя ни доказать, ни опровергнуть. Но Бог, по определению, есть конечная причина всех причин. С точки зрения математики это означает, что введение аксиомы о Боге делает всю нашу аксиоматику полной. Если есть Бог, значит любое утверждение можно либо доказать, либо опровергнуть, ссылаясь, так или иначе, на Бога. Но по Геделю полная система аксиом неизбежно противоречива. То есть, если мы считаем, что Бог существует, то мы вынуждены прийти к выводу, что в природе возможны противоречия. А поскольку противоречий нет, иначе бы весь наш мир рассыпался от этих противоречий, приходиться прийти к выводу, что существование Бога не совместимо с существованием природы.
-
Сосинский А. Б.
Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции в рамках проекта «Публичные лекции "Полит.ру"» раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.
-
Питер Эткинз

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
-
Морис Клайн

Что такое математика? Каковы ее происхождение и история? Чем занимаются математики сегодня и каков ныне статус науки, которая составляет предмет их интересов и профессиональной деятельности? Ответы на эти и многие другие вопросы читатель найдет в книге известного американского математика, профессора Нью-Йоркского университета Мориса Клайна. В этой работе автор в увлекательной и популярной манере описывает историю развития и становления современной математики от античности до наших дней, а также рассказывает о глубоких изменениях, которые претерпели взгляды человека на существо математической науки и ее роль в современном мире.
-
Успенский В. А.
Лекция посвящена синтаксической версии Теоремы Гёделя о неполноте. Сам Гёдель доказал синтаксическую версию, используя более сильное, чем непротиворечивость, предположение, а именно так называемую омега-непротиворечивость.
-
Успенский В. А.
Лекции летней школы «Современная математика», г. Дубна.
-
Сухотин А. К.

Книга рассказывает о парадоксальных состояниях науки, возникающих в ситуации когда обнаруживается неудовольствие старым знанием, а новое еще не настолько доказало свою жизненность, чтобы прочно войти в сознание большинства. Освещены приемы, которые привлекаются учеными для построения парадоксальных теорий, дается расшифровка некоторых механизмов творчества. Автор раскрывает назначение парадокса как источника новых приобретений в знаниях, его роль в выдвижении плодотворных идей. Парадоксы поучительны. Каждый из них повествует о каких-то неожиданных поворотах науки в постановке проблем, методах решения, судьбах ее открытий.
Далее >>>
|