Scisne?

Предисловие / Принцесса или тигр?

Смаллиан Рэймонд

Комментарии: 0
<<< |1|2|3|4|5|6|7| >>>

Предисловие

Из множества занятных писем, присланных мне после выхода в свет моей первой книги логических головоломок (названия ее я никак не упомню!), одно принадлежало десятилетнему сыну довольно известного математика, с которым я в свое время учился в школе. В письме предлагалась весьма изящная и оригинальная задача, навеянная некоторыми задачками из моей книжки, которую мальчик прочитал взахлеб. Я сразу же позвонил отцу, решив поздравить его с таким умницей. Но тот, прежде чем позвать к телефону самого парнишку, стал заговорщически шептать в трубку: "Ему страшно нравится твоя книга! Но когда будешь с ним толковать, не проговорись, что эта штука называется математикой — в школе он ее просто ненавидит! Чуть заподозрит, что твоя книжка математическая, тут же забросит ее подальше».

Я вспомнил об этой истории потому, что она представляет собой иллюстрацию странного, но распространенного явления. Множество людей, с которыми я сталкивался, утверждали, что ненавидят математику, и в то же время с азартом накидывались на любую логическую или математическую задачу, которую я им подсовывал, стоило лишь облечь ее в форму занимательной головоломки. Я бы ничуть не удивился, если бы хорошие сборники головоломок оказались одним из лучших лекарств против так называемого «страха перед математикой». Более того, любой учебник математики вполне можно переписать в форме набора занимательных задач. Я иногда воображал, что бы произошло, если бы Евклид представил свои классические «Начала» именно в таком виде. Например, вместо того чтобы сформулировать в качестве теоремы утверждение о равенстве углов, лежащих в основании равнобедренного треугольника, а затем строго доказать эту теорему, Евклид начал бы так: «Задача. Дан треугольник с двумя равными сторонами. Всегда ли у него есть два равных угла? Если да, то почему, если нет, то тоже почему? (Решение смотри на странице такой-то.)» А потом и все остальные теоремы постарался бы изложить в таком же духе. Такая книжка вполне могла бы оказаться одним из самых популярных сборников задач в истории!

Вообще-то мои собственные сборники задач отличаются тем, что меня в первую очередь привлекают задачи, связанные с наиболее глубокими и важными результатами логики и математики. Так, истинной целью моей первой книги логических задач было желание дать широкому читателю хотя бы скромное представление о том, в чем же суть великой теоремы Геделя. Книжка, которую вы держите в руках сейчас, — следующий шаг в этом направлении. Многие факты и задачи из нее я использовал в одном из своих курсов лекций, озаглавленном «Головоломки и парадоксы». Тогда-то один из моих студентов заметил мне: «Знаете, профессор, ваша книга — особенно ее третья и четвертая части — читается прямо как какой-то математический роман. Ничего подобного я раньше не встречал!». Мне кажется, что слова «математический роман» в этом случае весьма уместны. Действительно, большая часть книги написана в форме художественного повествования. Поэтому ее вполне можно было бы назвать как-то вроде «Тайна сейфа из Монте-Карло» — ведь в последней части книги речь идет о расследовании, в процессе которого инспектор Крейг из Скотланд-Ярда пытается подобрать комбинацию цифр, позволяющую открыть замок одного из сейфов в Монте-Карло, и тем предотвратить катастрофу. Когда все его усилия вскрыть сейф оказываются безуспешными, инспектор возвращается в Лондон, где по счастливой случайности вновь сталкивается с блестящим и чудаковатым изобретателем цифровых кодирующих машин. Они приглашают еще и специалиста по математической логике, и вскоре все трое погружаются в глубокие воды потока, ведущего в самое сердце великого открытия Гёделя. Конечно же, замок сейфа из Монте-Карло оказывается «гёделевым», а его modus ореrandi [1] прекрасно иллюстрирует фундаментальную идею Гёделя, влияние и результаты которой обнаруживаются во многих научных теориях, связанных с таким удивительным явлением, как процесс самовоспроизведения.

В конечном счете исследования Крейга и его друзей приводят к весьма примечательным математическим открытиям, не известным до настоящего времени ни ученому миру, ни тем более широкой публике, — это так называемые «законы Крейга» и «законы Фергюссона», которые впервые преданы гласности на страницах книги. Несомненно, они должны заинтересовать как любителей математики, так и логиков, лингвистов и специалистов по вычислительной технике.

Книгу эту я писал с огромным удовольствием; хотелось бы, чтобы с таким же удовольствием ее и читали. Собираюсь написать еще несколько книг в том же духе. Наконец, я хочу поблагодарить моего редактора Энн Клоуз и технического редактора Мелвина Розенталя за ту неоценимую помощь, которую они мне оказали.

Элка-Парк, штат Нью-Йорк
Рэймонд Смаллиан
Февраль 1982 г.



1. Принцип работы (лат.).

<<< |1|2|3|4|5|6|7| >>>
Комментарии: 0