Scisne?

Амёбы-мутанты не позволяют себя обманывать

Комментарии: 0

Амёбы Dictyostelium при недостатке пищи собираются в многоклеточные агрегаты (слева), из которых затем образуются плодовые тела на длинной ножке (справа). Фото с сайта www.iaa.es
Амёбы Dictyostelium при недостатке пищи собираются в многоклеточные агрегаты (слева), из которых затем образуются плодовые тела на длинной ножке (справа). Фото с сайта www.iaa.es

Любой социальной системе, основанной на кооперации и альтруизме, приходится защищаться от нахлебников и обманщиков, пользующихся чужой добротой, но ничего не дающих взамен. Эксперименты, проведенные американскими биологами с амёбами Dictyostelium, у которых социальный паразитизм широко распространен, показали, что способность защищаться от нахлебников может развиться очень быстро в результате случайных мутаций и отбора, осуществляемого самими же нахлебниками.

Амёбы Dictyostelium в последние годы стали излюбленным объектом биологов, изучающих эволюцию кооперации и социального поведения. Эти амёбы при недостатке пищи собираются в большие многоклеточные агрегаты (псевдоплазмодии), из которых затем образуются плодовые тела. Те амёбы, чьи клетки идут на построение ножки плодового тела, фактически жертвуют собой ради товарищей, которые получают шанс превратиться в споры и продолжить род. Очень похожее социальное поведение наблюдается у ряда других микробов, в том числе у бактерий миксококков и бацилл (см.: Бактерии-альтруисты помогают своим сородичам-каннибалам себя съесть), а также у ряда одноклеточных эукариот, объединяемых вместе с диктиостелиумом в группу миксомицетов.

Создается впечатление, что эволюция неоднократно «пыталась» создать из социальных бактерий или простейших, умеющих собираться в плотные скопления, многоклеточный организм — но дело почему-то не пошло дальше плазмодиев и довольно просто устроенных многоклеточных плодовых тел. Все по-настоящему сложные многоклеточные организмы формируются иным путем — не из множества индивидуальных клеток со своими особенными геномами, а из потомков одной-единственной клетки (что гарантирует генетическую идентичность всех клеток организма).

Жизненный цикл и социальный паразитизм у Dictyostelium. Синим и желтым цветами обозначены два штамма (разновидности) амёб — «обманщики» и «честные». а — при избытке пищи амёбы живут поодиночке, растут и размножаются бесполым путем (делением); половое размножение у них тоже иногда происходит, но в лабораторных условиях это — большая редкость, и на схеме оно не показано. b–c — при недостатке пищи амёбы собираются в большие скопления. d — в результате образуются многоклеточные агрегаты длиной в несколько миллиметров, которые могут некоторое время ползать на манер слизней; их так и называют — «slugs». e–g — в конце концов многоклеточный агрегат превращается в «плодовое тело» на ножке; при этом около 20% клеток жертвуют собой, образуя ножку, а 80% превращаются в споры и получают шанс продолжить свой род. Видно, что синие клетки («обманщики») захватили почти все лучшие места в плодовом теле и превратились в споры, предоставив всю неблагодарную работу по созданию ножки желтым клеткам («честным»). Рис. из статьи: Richard H. Kessin. Cooperation can be dangerous // Nature. 2000. V. 408. P. 917–919
Жизненный цикл и социальный паразитизм у Dictyostelium. Синим и желтым цветами обозначены два штамма (разновидности) амёб — «обманщики» и «честные». а — при избытке пищи амёбы живут поодиночке, растут и размножаются бесполым путем (делением); половое размножение у них тоже иногда происходит, но в лабораторных условиях это — большая редкость, и на схеме оно не показано. b–c — при недостатке пищи амёбы собираются в большие скопления. d — в результате образуются многоклеточные агрегаты длиной в несколько миллиметров, которые могут некоторое время ползать на манер слизней; их так и называют — «slugs». e–g — в конце концов многоклеточный агрегат превращается в «плодовое тело» на ножке; при этом около 20% клеток жертвуют собой, образуя ножку, а 80% превращаются в споры и получают шанс продолжить свой род. Видно, что синие клетки («обманщики») захватили почти все лучшие места в плодовом теле и превратились в споры, предоставив всю неблагодарную работу по созданию ножки желтым клеткам («честным»). Рис. из статьи: Richard H. Kessin. Cooperation can be dangerous // Nature. 2000. V. 408. P. 917–919

Одна из самых очевидных причин «эволюционной бесперспективности» многоклеточных организмов, образующихся из скоплений одноклеточных индивидуумов, состоит в том, что такие организмы создают идеальные условия для развития социального паразитизма и нахлебничества. Любая мутация, позволяющая одноклеточному индивиду пользоваться благами жизни в многоклеточном «коллективе» и ничего не давать взамен, имеет шанс распространиться, невзирая на ее гибельность для популяции (см.: Микробиологи утверждают: многоклеточность — сплошное жульничество). Точно такая же проблема встает и перед социальными животными, включая человека.

Для того чтобы выжить, социальным организмам вроде диктиостелиума необходимо каким-то образом защищаться от нахлебников. Теоретически они могут это делать несколькими способами (см. ссылки внизу). Ранее в одном из экспериментов на миксобактериях было зарегистрировано появление мутации, обеспечивающей защиту от нахлебничества (см.: Способность к сложному коллективному поведению может возникнуть благодаря единственной мутации). Однако до сих пор никто не пытался экспериментально установить вероятность (или частоту) появления подобных мутаций, то есть понять, является ли возникновение устойчивости к тем или иным разновидностям нахлебников обычным делом или редким исключением.

Эксперименты, проведенные биологами из нескольких научных центров Хьюстона (США) на диктиостелиуме, показали, что вероятность развития устойчивости в результате случайных мутаций у этого организма довольно высока. Ученые работали с двумя штаммами диктиостелиума  — «честными» амёбами дикого типа (условное обозначение штамма — AX4) и одним из нескольких известных штаммов амёб-«обманщиков» (chtC). Если смешать амёб из этих штаммов в равной пропорции и начать морить их голодом, они образуют химерные (смешанные) плодовые тела. При этом «обманщики» занимают лучшие места в плодовом теле и превращаются в споры, предоставляя «честным» амёбам в одиночку строить ножку плодового тела. В результате среди образовавшихся спор резко преобладают споры обманщиков.

Авторы искусственно повысили темп мутирования у «честных» амёб AX4 при помощи генетических конструкций (плазмид), встраивающихся в различные участки генома диктиостелиума (см. Restriction Enzyme-Mediated Integration (REMI) Mutagenesis). В состав плазмиды входил ген устойчивости к антибиотику бластицидину S. Встраиваясь в разные места генома, плазмида влияла на работу близлежащих генов. Затем из множества получившихся амёб-мутантов взяли тысячу особей с разными мутациями и каждой из них дали возможность размножиться.

После этого начался отбор на устойчивость к нахлебникам, причем в качестве отбирающего агента использовались сами нахлебники. Амёб из тысячи мутантных штаммов смешивали в равной пропорции и объединяли с амёбами-обманщиками, причем последних было в четыре раза больше, чем честных амёб-мутантов. Смешанную популяцию морили голодом, заставляя образовывать плодовые тела. Затем собирали образовавшиеся споры и выводили из них амёб. Естественно, среди них преобладали обманщики chtC, но экспериментаторы убивали их всех бластицидином S (как мы помним, все амёбы-мутанты имели ген, защищающий их от этого антибиотика). В результате получалась смесь амёб-мутантов, но из тысячи исходных штаммов в ней теперь преобладали те, кто смог лучше других противостоять обманщикам. Этих амёб снова смешивали с обманщиками в пропорции 1 : 4 и снова заставляли образовывать плодовые тела.

После шести таких циклов в популяции амёб-мутантов остались представители только одного из тысячи исходных штаммов. Авторы исследовали геном этих амёб и выяснили, что плазмида у них встроилась в ген DDB_G0271758, кодирующий белок с неизвестной функцией.

Выживший мутантный штамм назвали rccA (resister of cheater chtC A). Авторы убедились, что амёбы rccA действительно защищены от нахлебничества со стороны обманщиков-chtC. Если смешать тех и других в равной пропорции, то споры в химерных плодовых телах образуются тоже в равной пропорции — следовательно, жульнические приемы амёб chtC, в чём бы они ни заключались, бессильны против амёб rccA. Однако другой штамм амёб-обманщиков, LAS1, успешно паразитировал на амёбах rccA. Следовательно, мутация в гене DDB_G0271758 защитила амёб не от любых обманщиков, а только от вполне определенных.

Авторы также проверили, не стал ли устойчивый штамм rccA сам «обманщиком» по отношению к исходному штамму AX4. Теоретически, один из способов одолеть обманщика в эволюционной «гонке вооружений» — это самому стать еще более искусным обманщиком. Подобное соревнование между обманщиками в итоге может привести всю систему, основанную на кооперации, к полному краху. Однако в данном случае этого не произошло: штамм rccA остался вполне «честным» по отношению к AX4.

Более того, эксперименты со смешанными культурами, состоящими из равного количества амёб AX4 («диких»), chtC («обманщиков») и rccA («защищенных»), показали, что амёбы rccA защищают от обмана не только себя, но и диких амёб AX4 (хотя и в несколько меньшей степени). Присутствие амёб rccA каким-то образом мешает обманщикам chtC вытеснять амёб AX4 из выгодных позиций в плодовых телах. Ясно, что взаимопомощь честных штаммов открывает дополнительные возможности для борьбы с обманщиками.

Эксперимент по выведению амёб, защищенных от нахлебничества, был повторен еще шесть раз с другими выборками амёб-мутантов. Во всех случаях после шести циклов отбора из исходной тысячи мутантных штаммов оставался либо один, либо два устойчивых к нахлебничеству со стороны chtC. В трех случаях устойчивость развилась не за счет исходной вставки плазмиды, а за счет каких-то других мутаций, возникших спонтанно уже в ходе эксперимента. Чтобы это установить, ученые определяли, куда вставилась плазмида у данного устойчивого штамма, а затем встраивали плазмиду в ту же самую точку генома амёбам из исходной линии AX4. Если после такой операции амёбы не приобретали способность сопротивляться нахлебникам, значит эта способность возникла в результате других мутаций. Каких именно — авторы не выяснили (это очень сложно технически).

Три из семи исследованных устойчивых штаммов сами стали обманщиками по отношению к chtC, а один научился обманывать также и исходный «дикий» штамм AX4. Прочие остались честными.

Исследование показало, что вероятность появления мутаций, обеспечивающих защиту от нахлебников, у диктиостелиума весьма высока. Присутствие нахлебников способствует распространению защитных мутаций. Это должно приводить к эволюционной «гонке вооружений» между обманщиками и честными амёбами: первые совершенствуют средства обмана, вторые — средства защиты. Для того чтобы защититься от обманщиков, амёбы не обязаны сами становиться обманщиками. Это способствует сохранению кооперации. Молекулярные механизмы обмана и защиты от него пока остаются неизвестными, но скорее всего они связаны с системами межклеточной коммуникации и взаимного узнавания.

Источник: Anupama Khare, Lorenzo A. Santorelli, Joan E. Strassmann, David C. Queller, Adam Kuspa, Gad Shaulsky. Cheater-resistance is not futile // Nature. Advance online publication 30 September 2009.


www.elementy.ru

Комментарии: 0