Scisne?

Сложность конечных последовательностей нулей и единиц и геометрия конечных функциональных пространств // Арнольд В. И. ≫ Похожее

Публикации: 705
|1|2|3|4|5|…|36| >>>
  • Владимир Кассандров
    Программа Гордона
    Существует ли единый «Код Природы»? Может ли число порождать свет, а свет — материю? В чем суть основных принципов «неопифагорейского» подхода к построению физических теорий? О «реке времени» и частицах как точках «сгущения» первичных световых потоков — физик Владимир Кассандров.
  • «Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.
  • Вашему вниманию предлагается исследовательская программа, последовательно возрождающая неопифагорейскую философию в теоретической физике и основанная на убеждении в неслучайности физических законов, в существовании единого первичного принципа, определяющего структуру (видимого и невидимого) Мира и записанного на абстрактном математическом языке, на языке Чисел (целых, действительных и, возможно, их обобщений).
  • Алексей Семихатов
    Как математически были классифицированы симметрии явлений? Как соотносятся полупростые группы Ли и физика элементарных частиц? Что явилось математической предпосылкой существования кварков? О полупростых группах Ли, классификации элементарных частиц и математических моделях в природе рассказывает Алексей Семихатов, доктор физико-математических наук, главный научный сотрудник Физического института им. Лебедева РАН.
  • Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой — в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.
  • В 1980 году Книга рекордов Гиннесса повторила утверждения Гарднера, ещё больше подогрев интерес публики к этому числу. Число Грехема в невообразимое количество раз больше, чем другие хорошо известные большие числа, такие, как гугол, гуголплекс и даже больше, чем число Скьюза и число Мозера. На самом деле вся наблюдаемая вселенная слишком мала для того, чтобы вместить в себя обыкновенную десятичную запись числа Грехема.
  • Александров П. С., Маркушевич А. И., Хинчин А. Я.
    Сборник книг предназначается для людей, изучавших элементарную математику и уже ставших или готовящихся стать преподавателями элементарной математики. Логика нашего издания - это логика систематического, по возможности простого и доступного изложения тех вопросов математической науки, из которых строится школьный курс, а также и тех, которые хотя и не находят в этом курсе прямого выражения, однако необходимы для правильного и сознательного его понимания и создают перспективы для дальнейшего развития содержания и методов школьного курса.
  • Успенский В. А.
    Действительно ли в математике всё определяется и доказывается? Можно ли определить понятие натурального числа? Можно ли определить Натуральный Ряд (с прописной буквы)? Можно ли аксиоматически определить понятие натурального ряда (со строчной буквы)? Можно ли доказать, что Великую теорему Ферма нельзя ни доказать, ни опровергнуть? Что такое доказательство? Можно ли математику сделать понятной?
  • Обезьяны могут решать математические задачи. Исследователям удалось научить трёх макак-резусов (Macaca mulatta) выполнять простейшие операции на сложение с помощью арабских цифр от 1 до 25.
  • Мартин Гарднер
    Математические фокусы - очень своеобразная форма демонстрации математических закономерностей. Этой скрытой математичностью и интересна книга Мартина Гарднера - сам автор не формулирует на языке математики закономерностей, лежащих в основе его экспериментов, ограничиваясь описанием действий показывающего, явных и тайных. Но читателю, знакомому с элементами школьной алгебры и геометрии, несомненно, доставит удовольствие самому восстановить по объяснениям автора соответствующую алгебраическую или геометрическую идею. Книга будет интересна многим читателям: юным участникам математических кружков, взрослым любителям математики, а может быть, тот или иной из описанных здесь экспериментов пробудит улыбку и у серьезного ученого в краткий момент отдыха от большой работы.
  • Успенский В. А.
    В этой книге говориться о математике как о части культуры духовной. Данный текст писался не для математиков, а скорее для гуманитариев. Поэтому при его составлении в ряде случаев приходилось выбирать между понятностью и точностью. Предпочтение отдавалось понятности. Очерчивая место математики в современной культуре, автор пытается прояснить для читателей-нематематиков некоторые основные понятия и проблемы «царицы наук».
  • Питер Эткинз
    Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
  • Игра эта давно приобрела массовый характер и стала неотъемлемой частью современной жизни. И хотя лотерея всё больше расширяет свои возможности, многие люди по-прежнему видят в ней лишь способ обогащения. Пусть и не бесплатный и не надёжный. С другой стороны, как заметил один из героев Джека Лондона, в азартной игре нельзя не считаться с фактами — людям иногда везёт.
  • Роджер Пенроуз
  • Сергей Ландо
    Когда топология стала самостоятельным разделом математики? В чем различия между топологией и геометрией? Какое применение топология нашла в физике? И каковы перспективы исследований в этой области? Об этом рассказывает доктор физико-математических наук Сергей Ландо.
  • Что из себя представляет знаменитое число Пи? Можно ли точно высчитать его значение? Где оно применяется? Ответы на все эти вопросы раскрыты в короткометражном ролике от TED-ed.
  • Николай Мощевитин
    Как определял цепные дроби Адольф Гурвиц? В чем смысл гипотезы Зарембы? И какие математические задачи связаны с цепными дробями? Об этом рассказывает доктор физико-математических наук Николай Мощевитин.
  • BBC Horizon
    Профессор Оксфордского университета Маркус Дю Сотой является действительным членом Американского математического общества и работает с теорией групп и теорией чисел. У Алана Дейвиса в школе была тройка по математике, у Маркус Дю Сотой — крепкая пятерка с большим плюсом. Их объединяет только одно: они оба болеют за "Арсенал". Профессор Дю Сотой берется объяснить Алану Дейвису и широкой публике, как математика помогает нам понять окружающий мир. Он знакомит его и зрителей с математическими принципами, которые способны расширить сознание и изменить представление о реальности. Задания для Дейвиса будут усложняться, пока не будет задан главный вопрос, который изменит отношение Алана и зрителей к Вселенной.
  • Александр Буфетов
    Стенограмма и видеозапись лекции доктора физико-математических наук, ведущего научного сотрудника Математического института имени Стеклова, ведущего научного сотрудника ИППИ РАН, профессора факультета математики Высшей школы экономики, директора исследований Национального центра научных исследований во Франции (CNRS) Александра Буфетова, прочитанной в рамках цикла «Публичные лекции "Полит.ру"» 6 февраля 2014 г.
|1|2|3|4|5|…|36| >>>