Scisne?

Семь размышлений на темы философии математики // Успенский В. А. ≫ Похожее

Публикации: 289
|1|2|3|4|5|…|15| >>>
  • Успенский В. А.
    В этой книге говориться о математике как о части культуры духовной. Данный текст писался не для математиков, а скорее для гуманитариев. Поэтому при его составлении в ряде случаев приходилось выбирать между понятностью и точностью. Предпочтение отдавалось понятности. Очерчивая место математики в современной культуре, автор пытается прояснить для читателей-нематематиков некоторые основные понятия и проблемы «царицы наук».
  • Александров П. С., Маркушевич А. И., Хинчин А. Я.
    Сборник книг предназначается для людей, изучавших элементарную математику и уже ставших или готовящихся стать преподавателями элементарной математики. Логика нашего издания - это логика систематического, по возможности простого и доступного изложения тех вопросов математической науки, из которых строится школьный курс, а также и тех, которые хотя и не находят в этом курсе прямого выражения, однако необходимы для правильного и сознательного его понимания и создают перспективы для дальнейшего развития содержания и методов школьного курса.
  • Успенский В. А.
    Лекции летней школы «Современная математика», г. Дубна.
  • Успенский В. А.
    Лекция посвящена синтаксической версии Теоремы Гёделя о неполноте. Сам Гёдель доказал синтаксическую версию, используя более сильное, чем непротиворечивость, предположение, а именно так называемую омега-непротиворечивость.
  • Питер Эткинз
    Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
  • Сосинский А. Б.
    Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции в рамках проекта «Публичные лекции "Полит.ру"» раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.
  • Могут ли у внеземной цивилизации быть другие основы математики?
  • Дмитрий Фон-Дер-Флаасс
    Мы предлагаем вашему вниманию запись (с небольшими сокращениями и с сохранением авторского стиля) лекции, прочитанной Дмитрием Фон-Дер-Флаассом во Всероссийском детском центре «Орленок» в 2009 году.
  • Как развивается научная модель в естественных науках? Накапливается житейский либо научный опыт, его вехи аккуратно формулируются в виде постулатов и образуют базу модели: набор утверждений, принимаемых всеми, кто работает в рамках этой модели.
  • Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.
  • Янов Ю. И.
    В связи с разными точками зрения на природу математики рассматриваются вопросы о метаматематическом понятии истины и возможности убедительного доказательства истинности математических теорем.
  • Анатолий Вассерман
    В 1930 году Курт Гедель доказал две теоремы, которые в переводе с математического языка на человеческий означают примерно следующее: Любая система аксиом, достаточно богатая, чтобы с ее помощью можно было определить арифметику, будет либо не полна, либо противоречива. Не полная система – это значит, что в системе можно сформулировать утверждение, которое средствами этой системы нельзя ни доказать, ни опровергнуть. Но Бог, по определению, есть конечная причина всех причин. С точки зрения математики это означает, что введение аксиомы о Боге делает всю нашу аксиоматику полной. Если есть Бог, значит любое утверждение можно либо доказать, либо опровергнуть, ссылаясь, так или иначе, на Бога. Но по Геделю полная система аксиом неизбежно противоречива. То есть, если мы считаем, что Бог существует, то мы вынуждены прийти к выводу, что в природе возможны противоречия. А поскольку противоречий нет, иначе бы весь наш мир рассыпался от этих противоречий, приходиться прийти к выводу, что существование Бога не совместимо с существованием природы.
  • Смаллиан Рэймонд
    Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
  • В 1980 году Книга рекордов Гиннесса повторила утверждения Гарднера, ещё больше подогрев интерес публики к этому числу. Число Грехема в невообразимое количество раз больше, чем другие хорошо известные большие числа, такие, как гугол, гуголплекс и даже больше, чем число Скьюза и число Мозера. На самом деле вся наблюдаемая вселенная слишком мала для того, чтобы вместить в себя обыкновенную десятичную запись числа Грехема.
  • Арнольд В. И.
    Популярная лекция, в том виде, в каком Владимир Игоревич Арнольд прочитал ее 13 мая 2006 года в концертном зале «Академический» по приглашению фонда «Династия». Эту лекцию, как уверяет сам академик Арнольд, может понять даже школьник.
  • Лебедев Ю. А.
  • ВВС
    Математика — универсальный язык Вселенной, фундамент, на котором основаны все другие науки. Как человечество смогло открыть тайны этого универсального языка? Начиная с древнейших времен, прослеживается история математики до наших дней и завершается рассказом о наиболее важных проблемах современности. Их решение позволит лучше понять устройство нашего мира.
  • Иэн Стюарт
    На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
  • Обезьяны могут решать математические задачи. Исследователям удалось научить трёх макак-резусов (Macaca mulatta) выполнять простейшие операции на сложение с помощью арабских цифр от 1 до 25.
  • Мартин Гарднер
    Математические фокусы - очень своеобразная форма демонстрации математических закономерностей. Этой скрытой математичностью и интересна книга Мартина Гарднера - сам автор не формулирует на языке математики закономерностей, лежащих в основе его экспериментов, ограничиваясь описанием действий показывающего, явных и тайных. Но читателю, знакомому с элементами школьной алгебры и геометрии, несомненно, доставит удовольствие самому восстановить по объяснениям автора соответствующую алгебраическую или геометрическую идею. Книга будет интересна многим читателям: юным участникам математических кружков, взрослым любителям математики, а может быть, тот или иной из описанных здесь экспериментов пробудит улыбку и у серьезного ученого в краткий момент отдыха от большой работы.
|1|2|3|4|5|…|15| >>>