Scisne?

Развитие искусственного интеллекта в шахматных программах ≫ Похожее

Публикации: 226
|1|2|3|4|5|…|12| >>>
  • Арлазаров В. Л.
    Минимакс, Альфа-бета, Применение теории к практике, Улучшения, Современные шахматные программы, История Deep Blue, Как устроена Deep Blue.
  • Математики оценивают количество различных шахматных партий величиной 10 в 120 степени – так называемое Число Шеннона (для сравнения – число атомов в изученной части вселенной – 10^80). Число различных позиций, возникающих на шахматной доске во время игры, несомненно, меньше, ведь в разных партиях могут возникать одинаковые позиции. Рассчитанное число позиций в шахматах около 10^43, включая некоторые невозможные позиции. Условно, с учетом легальности позиций, можно считать их количество приблизительно равным 10^40.
  • Такие нейросети состоят из 10–30 связанных слоев, которые работают последовательно: получив картинку, они анализируют ее и «сообщают» результаты анализа следующему слою. Например, первые слои могут искать на изображении края и углы, средние — интерпретировать наборы особенностей в отдельные объекты (например, двери или листья). Наконец, финальные слои объединяют все эти интерпретации воедино и делают выводы о том, что изображено на картинке — например, здание или дерево.
  • Александр Шень
    Какова история создания машины Тьюринга? Как она повлияла на развитие идей, лежащих в основе ряда современных технологий? Какие проблемы существуют в теории вычислительной сложности? И как математика рассматривает понятие случайность? Об этом рассказывает кандидат физико-математических наук Александр Шень.
  • Иванов Е. М.
    Речь в данной работе пойдет о так называемом "геделевском аргументе", который используется как аргумент против возможности создания искусственного интеллекта. Суть аргумента заключается в следующем: полагают, что из теоремы Курта Геделя о неполноте формальных систем вытекает принципиальное различие между искусственным ("машинным") интеллектом и человеческим умом.
  • Горбань А. Н.
    Игрушка ли нейрокомпьютер? В чем истинные преимущества нейрокомпьютеров? В каких областях преимущества нейронных систем наиболее очевидны? Избыточность — это хорошо или плохо? Какие задачи под силу только нейрокомпьютеру?
  • Впервые был достигнут масштаб, соответствующий человеческому мозгу — 530 миллиардов нейронов и 137 триллионов синапсов. Симуляция происходила в 1542 раза медленнее реального времени. В ней были задействованы все 1 572 864 ядер и полтора петабайта памяти.
  • У архитектуры фон Неймана есть один известный минус, который состоит в том, что и данные, и программы-инструкции, описывающие то, что нужно сделать с данными, находятся в одной и той же памяти. И процессор либо собирает данные из памяти, либо манипулирует ими в соответствии с командой. Одновременно подгружать новые данные и обрабатывать их в рамках такой схемы нельзя. Из-за этого современным компьютерам, сколь бы быстры они ни были, трудно выполнять некоторые задачи, например, связанные с распознаванием изображений. Пытаясь выйти за пределы архитектуры фон Неймана, специалисты по «электронным мозгам» обратились к мозгам настоящим.
  • Исследователям удалось смоделировать работу кусочка неокортекса крысы, объем ткани которого составляет треть кубического миллиметра, число нейронов достигает 30 тыс., а количество синапсов — мест контакта между двумя нейронами — превышает 40 млн. Этот успех стал результатом почти двух десятилетий исследований мозга и десяти лет работы по компьютерному симулированию его работы.
  • Сергей Марков
    На лекции мы обсудим вторую весну искусственного интеллекта в цифрах и фактах, ключевые работы в области искусственного интеллекта и машинного обучения в 2017 году. Поговорим о распознавании изображений, речи, обработке естественного языка и о других направлениях исследований; обсудим новые модели и оборудование 2017 года. Также поговорим о применении ИИ и машинного обучения в бизнесе, медицине и науке, а также обсудим, чего мы ждем от искусственного интеллекта и машинного обучения в 2018 году.
  • Сергей Марков
    Гамбургский счет
    В 1950 году английский ученый Алан Тьюринг в статье "Вычислительные машины и разум" задался вопросом: "Может ли машина понимать человека?". Так родился знаменитый тест Тьюринга, в котором компьютер пытался обмануть людей. Но как компьютер понимает человека и чего он пока понять не может? Об этом по гамбургскому счету мы решили спросить специалиста в области машинного обучения, директора информационных технологий компании "Activebusinesscollection" Сергея Маркова.
  • Иван Иванчей
    Когнитивная психология с самого начала своей истории описывала человека как вычислительную машину. Иван расскажет о ключевых моментах развития этого пути исследования человека, к чему он привёл на сегодняшний день и как учёные моделируют такие таинственные и, как кажется, присущие только человеку процессы, как интуиция, предвидение, инсайт и уверенность.
  • Непомнящих В. А.
    Формулируются и обсуждаются принципы поведения, позволяющие животным решать задачи поиска в условиях, когда эти задачи не поддаются формализации.Согласно этим принципам, 1) поведение представляет собой спонтанный процесс,общая организация которого не зависит от внешних сигналов; 2) этот процесс служит обобщенной моделью естественной среды животного; 3) обобщенная модель приводится в соответствие с конкретной средой с помощью гипотез, основанных лишь на отдельных внешних сигналах, а не на анализе всего потока сигналов. Обсуждается значение указанных принципов для разработки поисковых агентов.
  • Татьяна Черниговская
    Нейролингвист и экспериментальный психолог, доктор филологии и биологии, член-корреспондент Норвежской академии наук Татьяна Черниговская прочитала для проекта «Сноб. Диалоги» лекцию «Как интернет изменил наш мозг», в которой развеяла популярные стереотипы о работе мозга и рассказала, почему «Гугл» и онлайн-образование не так полезны, как кажутся. Мы приводим краткий конспект лекции.
  • Евгений Путин
    Евгений Путин, аспирант кафедры «Компьютерные Технологии» университета ИТМО. В рамках диссертации Евгений исследует проблемы интеграции концепции выбора признаков в математический аппарат искусственных нейронных сетей. Евгений расскажет о том, как устроены нейронные сети, что они могут делать сейчас, на что будут способны в недалеком будущем и ждать ли прихода Скайнета.
  • Бурцев М. С.
    Очень часто люди не задумываются, почему они придерживаются той или иной точки зрения. Так сегодня значительная часть исследователей и инженеров, занимающихся адаптивными системами, a priori придерживаются принципа "бытие определяет сознание", а, следовательно, и действия. Этот наивный взгляд на вещи, предполагает, что обучение состоит в нахождении закономерностей в том потоке информации, который доступен из наблюдения, поступает на вход системы. Естественно, что при таком подходе модель системы, обладающей адаптивным поведением, будет представлять собой некоторое отображение множества входных данных на множество выходов, управляющих поведением системы. При этом обучение, адаптивность поведения обычно обеспечивается детерминированными алгоритмами, изменяющими функцию отображения. Использование таких принципов, позволяет быстро создавать приемлемые модели адаптивных систем, которые обеспечивают достаточно гибкое поведение в среде, на которую рассчитывал конструктор. Однако, при соприкосновении с неожиданными изменениями среды, с необходимостью использования нестандартных ходов, такая "отражательная" детерминированная схема пасует. Как же создать действительно адаптивную систему?
  • Последнее время все большее внимание ученых привлекает новое направление исследований — эмоциональные вычисления (Affective computing). Роль эмоций в эволюции естественного интеллекта велика, искусственный интеллект пока многое упускает в этом отношении, в нем невозможно воплотить многие явления, связанные с эмоциональной картиной, с эмоциональным состоянием человека. Ученым из области ИИ активно помогают когнитивные нейробиологи, психологи и философы.
  • Алексей Потапов
    Искусственный интеллект всегда рассматривался в рамках «биологической метафоры» — как аналог человеческого интеллекта. Однако создаваемые сейчас искусственные интеллектуальные системы, которые превосходят человека при решении самых разных задач, нисколько не похожи на человека. Это относится даже к таким биологически инспирированным подходам, как искусственные нейронные сети. Я расскажу о том, как сейчас ученые в области ИИ определяют понятие интеллекта, какие проблемы стоят на пути построения мыслящих машин, и нужна ли или вредна для их преодоления «биологическая метафора».
  • Сэм Харрис
    Стоит ли бояться сверхразумного искусственного интеллекта? Нейробиолог и философ Сэм Харрис считает, что очень даже стоит. По его мнению, мы стоим на пороге создания сверхразумных машин, при этом не решив множество проблем, которые могут возникнуть при создании ИИ, который потенциально сможет обращаться с людьми так же, как те с муравьями.
  • Михаил Бурцев
    Почему за полвека усилий не удалось создать искусственный интеллект? И как киборги помогают понять работу мозга? Об этом рассказывает Михаил Бурцев, кандидат физико-математических наук, руководитель лаборатории нейронных систем и глубокого обучения МФТИ.
|1|2|3|4|5|…|12| >>>