Scisne?

Как создать эмоциональный искусственный интеллект ≫ Похожее

Публикации: 727
|1|2|3|4|5|…|37| >>>
  • Сэм Харрис
    Стоит ли бояться сверхразумного искусственного интеллекта? Нейробиолог и философ Сэм Харрис считает, что очень даже стоит. По его мнению, мы стоим на пороге создания сверхразумных машин, при этом не решив множество проблем, которые могут возникнуть при создании ИИ, который потенциально сможет обращаться с людьми так же, как те с муравьями.
  • Виталий Дунин-Барковский
    Как смоделировать мозг? Постижим ли человеческий мозг? Как алгоритмизировать сознание? И можно ли скопировать его на неорганический носитель? Ответы на эти вопросы помогает найти Виталий Дунин-Барковский, доктор физико-математических наук, профессор, заведующий отделом нейроинформатики Центра оптико-нейронных технологий НИИСИ РАН.
  • Михаил Бурцев
    Почему за полвека усилий не удалось создать искусственный интеллект? И как киборги помогают понять работу мозга? Об этом рассказывает Михаил Бурцев, кандидат физико-математических наук, руководитель лаборатории нейронных систем и глубокого обучения МФТИ.
  • Иван Иванчей
    Когнитивная психология с самого начала своей истории описывала человека как вычислительную машину. Иван расскажет о ключевых моментах развития этого пути исследования человека, к чему он привёл на сегодняшний день и как учёные моделируют такие таинственные и, как кажется, присущие только человеку процессы, как интуиция, предвидение, инсайт и уверенность.
  • Горбань А. Н.
    Игрушка ли нейрокомпьютер? В чем истинные преимущества нейрокомпьютеров? В каких областях преимущества нейронных систем наиболее очевидны? Избыточность — это хорошо или плохо? Какие задачи под силу только нейрокомпьютеру?
  • Евгений Путин
    Евгений Путин, аспирант кафедры «Компьютерные Технологии» университета ИТМО. В рамках диссертации Евгений исследует проблемы интеграции концепции выбора признаков в математический аппарат искусственных нейронных сетей. Евгений расскажет о том, как устроены нейронные сети, что они могут делать сейчас, на что будут способны в недалеком будущем и ждать ли прихода Скайнета.
  • Впервые был достигнут масштаб, соответствующий человеческому мозгу — 530 миллиардов нейронов и 137 триллионов синапсов. Симуляция происходила в 1542 раза медленнее реального времени. В ней были задействованы все 1 572 864 ядер и полтора петабайта памяти.
  • У архитектуры фон Неймана есть один известный минус, который состоит в том, что и данные, и программы-инструкции, описывающие то, что нужно сделать с данными, находятся в одной и той же памяти. И процессор либо собирает данные из памяти, либо манипулирует ими в соответствии с командой. Одновременно подгружать новые данные и обрабатывать их в рамках такой схемы нельзя. Из-за этого современным компьютерам, сколь бы быстры они ни были, трудно выполнять некоторые задачи, например, связанные с распознаванием изображений. Пытаясь выйти за пределы архитектуры фон Неймана, специалисты по «электронным мозгам» обратились к мозгам настоящим.
  • Сергей Марков
    На лекции мы обсудим вторую весну искусственного интеллекта в цифрах и фактах, ключевые работы в области искусственного интеллекта и машинного обучения в 2017 году. Поговорим о распознавании изображений, речи, обработке естественного языка и о других направлениях исследований; обсудим новые модели и оборудование 2017 года. Также поговорим о применении ИИ и машинного обучения в бизнесе, медицине и науке, а также обсудим, чего мы ждем от искусственного интеллекта и машинного обучения в 2018 году.
  • Сергей Марков
    Гамбургский счет
    В 1950 году английский ученый Алан Тьюринг в статье "Вычислительные машины и разум" задался вопросом: "Может ли машина понимать человека?". Так родился знаменитый тест Тьюринга, в котором компьютер пытался обмануть людей. Но как компьютер понимает человека и чего он пока понять не может? Об этом по гамбургскому счету мы решили спросить специалиста в области машинного обучения, директора информационных технологий компании "Activebusinesscollection" Сергея Маркова.
  • Исследователям удалось смоделировать работу кусочка неокортекса крысы, объем ткани которого составляет треть кубического миллиметра, число нейронов достигает 30 тыс., а количество синапсов — мест контакта между двумя нейронами — превышает 40 млн. Этот успех стал результатом почти двух десятилетий исследований мозга и десяти лет работы по компьютерному симулированию его работы.
  • Вячеслав Дубынин, Алексей Семихатов
    Чем всё-таки мозг отличается от компьютера и до какой степени можно их сравнивать? Если мозг намного медленнее современной вычислительной техники, то почему же до сих пор не удается создать компьютер настолько же умный, как и мозг? Разбирают все по-порядку Вячеслав Дубынин — доктор биологических наук, профессор кафедры физиологии человека и животных Биологического факультета МГУ, ведущий Алексей Семихатов — доктор физико-математических наук, ведущий научный сотрудник ФИАН.
  • Бурцев М. С.
    Очень часто люди не задумываются, почему они придерживаются той или иной точки зрения. Так сегодня значительная часть исследователей и инженеров, занимающихся адаптивными системами, a priori придерживаются принципа "бытие определяет сознание", а, следовательно, и действия. Этот наивный взгляд на вещи, предполагает, что обучение состоит в нахождении закономерностей в том потоке информации, который доступен из наблюдения, поступает на вход системы. Естественно, что при таком подходе модель системы, обладающей адаптивным поведением, будет представлять собой некоторое отображение множества входных данных на множество выходов, управляющих поведением системы. При этом обучение, адаптивность поведения обычно обеспечивается детерминированными алгоритмами, изменяющими функцию отображения. Использование таких принципов, позволяет быстро создавать приемлемые модели адаптивных систем, которые обеспечивают достаточно гибкое поведение в среде, на которую рассчитывал конструктор. Однако, при соприкосновении с неожиданными изменениями среды, с необходимостью использования нестандартных ходов, такая "отражательная" детерминированная схема пасует. Как же создать действительно адаптивную систему?
  • Александр Марков
    Нейропептид окситоцин играет важную роль в регуляции социального поведения у животных, включая человека. Ранее было показано, что под действием окситоцина люди становятся добрее, доверчивее, внимательнее к другим. Эти исследования, однако, не учитывали того обстоятельства, что альтруизм у людей с древнейших времен был парохиальным, то есть направленным только на «своих». Новые эксперименты, проведенные голландскими психологами, показали, что положительные эффекты окситоцина распространяются на тех, кого человек считает «своими», но не на членов конкурирующих групп. Окситоцин усиливает желание защищать своих и может стимулировать нанесение «упреждающих ударов» по чужакам с целью защиты от возможной агрессии с их стороны.
  • Математики оценивают количество различных шахматных партий величиной 10 в 120 степени – так называемое Число Шеннона (для сравнения – число атомов в изученной части вселенной – 10^80). Число различных позиций, возникающих на шахматной доске во время игры, несомненно, меньше, ведь в разных партиях могут возникать одинаковые позиции. Рассчитанное число позиций в шахматах около 10^43, включая некоторые невозможные позиции. Условно, с учетом легальности позиций, можно считать их количество приблизительно равным 10^40.
  • Алексей Потапов
    Искусственный интеллект всегда рассматривался в рамках «биологической метафоры» — как аналог человеческого интеллекта. Однако создаваемые сейчас искусственные интеллектуальные системы, которые превосходят человека при решении самых разных задач, нисколько не похожи на человека. Это относится даже к таким биологически инспирированным подходам, как искусственные нейронные сети. Я расскажу о том, как сейчас ученые в области ИИ определяют понятие интеллекта, какие проблемы стоят на пути построения мыслящих машин, и нужна ли или вредна для их преодоления «биологическая метафора».
  • Такие нейросети состоят из 10–30 связанных слоев, которые работают последовательно: получив картинку, они анализируют ее и «сообщают» результаты анализа следующему слою. Например, первые слои могут искать на изображении края и углы, средние — интерпретировать наборы особенностей в отдельные объекты (например, двери или листья). Наконец, финальные слои объединяют все эти интерпретации воедино и делают выводы о том, что изображено на картинке — например, здание или дерево.
  • Арлазаров В. Л.
    Минимакс, Альфа-бета, Применение теории к практике, Улучшения, Современные шахматные программы, История Deep Blue, Как устроена Deep Blue.
  • История развития автоматики и вычислительной техники странным образом связана с шахматами. В XVIII в. "думающие" шахматные автоматы служили для фокусов и мистификаций. Первый аппарат с настоящим искусственным интеллектом, созданный в Испании в начале ХХ в., был способен поставить мат королем и ладьей шахматисту, играющему королем. Видимо, не случайно и то, что одной из первых действительно интеллектуальных задач, поставленных перед программистами еще на заре вычислительной техники, была игра в шахматы. О шахматных программах и связи этой древней игры с развитием технологий искусственного интеллекта мы попросили рассказать одного из тех, кто создавал первые шахматные программы, доктора технических наук, профессора Владимира Львовича Арлазарова.
  • Сергей Мурик
    Мы не сомневаемся, что обезьяны, собаки, кошки способны страдать, радоваться, любить, ненавидеть, то есть испытывать эмоции. А есть ли эмоции у других живых существ, не относящихся к млекопитающим? Что чувствует синичка, попавшая в незнакомую обстановку? Лягушка, услышавшая странные звуки? Замирает ли от ужаса гусеница, оказавшаяся в клюве скворца?
|1|2|3|4|5|…|37| >>>