Scisne?

Поиск публикаций: математика [2]

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 157
<<< |1|2|3|4|5|6|…|8| >>>
ПубликацияРазделКомм.
Специалисты из Стэнфордского университета обнаружили, что сканирование мозга восьмилетних школьников позволяет спрогнозировать, какими будут их успехи в изучении математических наук в течение последующих шести лет.
Нейробиология, психиатрия 0 Ø
Пифагорейцы утверждали, что числа правят миром, а Александр Суворов называл математику «гимнастикой ума». Сейчас интерес к этой науке постепенно возрождается. T&P поговорили с пятью известными математиками, чтобы разобраться, зачем формулы и уравнения нужны в повседневной жизни, почему математика — интересный и творческий предмет, и что теряет гуманитарий, отмахиваясь от этой науки.
Математика 0 Ø
Грамотность даже среди духовенства, где она требовалась по уставу, была удручающе низкой. Все научные книги, изданные на Западе (где как раз с XII века начался научный подъём), были запрещены. Сохранилось поучение тех лет, гласящее: «Богомерзостен перед Богом всякий, кто любит геометрию; а се душевные грехи учиться астрономии и эллинским книгам; по своему разуму верующий легко впадает в различные заблуждения»
История 0 Ø
Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой — в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.
Математика 1 Анатолий Борисович
19 Июл 2019 16:54:29 >>>
Калькуляторы, ставшие в последние годы повсеместно доступными, несомненное благо, которое, однако, имеет и негативные стороны. Все ли понимают, сколько цифр нужно оставлять при умножении и делении на калькуляторе, если он показывает их восемь или даже двенадцать? И почти все студенты и даже аспиранты считают, что оставлять их нужно как можно больше. Это неверно!
Математика 0 Ø
После доказательства гипотезы (теперь уже теоремы) Пуанкаре Григорием Перельманом, основным вопросом, который заинтересовал многих, был: «А что же он собственно доказал, объясните на пальцах?» Попробуем объяснить на пальцах и остальные задачи тысячелетия, или по крайней мере подойти в ним с другой более близкой к реальности стороны.
Математика 0 Ø
Смаллиан Рэймонд
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
Математика ≫ Книги 0 Ø
Арлазаров В. Л.
Минимакс, Альфа-бета, Применение теории к практике, Улучшения, Современные шахматные программы, История Deep Blue, Как устроена Deep Blue.
Кибернетика, когнитивистика 0 Ø
История развития автоматики и вычислительной техники странным образом связана с шахматами. В XVIII в. "думающие" шахматные автоматы служили для фокусов и мистификаций. Первый аппарат с настоящим искусственным интеллектом, созданный в Испании в начале ХХ в., был способен поставить мат королем и ладьей шахматисту, играющему королем. Видимо, не случайно и то, что одной из первых действительно интеллектуальных задач, поставленных перед программистами еще на заре вычислительной техники, была игра в шахматы. О шахматных программах и связи этой древней игры с развитием технологий искусственного интеллекта мы попросили рассказать одного из тех, кто создавал первые шахматные программы, доктора технических наук, профессора Владимира Львовича Арлазарова.
Кибернетика, когнитивистика 0 Ø
Алексей Семихатов
Как мы воспринимаем размерность пространства? Каким образом связаны логическое математическое мышление и интуиция? Как были описаны фракталы? Об апории Зенона «Ахиллес и черепаха», отеле Гильберта и размерности пространства рассказывает Алексей Семихатов, доктор физико-математических наук, главный научный сотрудник Физического института им. Лебедева РАН.
Математика ≫ Видео 0 Ø
Алексей Семихатов
Как математически были классифицированы симметрии явлений? Как соотносятся полупростые группы Ли и физика элементарных частиц? Что явилось математической предпосылкой существования кварков? О полупростых группах Ли, классификации элементарных частиц и математических моделях в природе рассказывает Алексей Семихатов, доктор физико-математических наук, главный научный сотрудник Физического института им. Лебедева РАН.
Математика ≫ Видео 0 Ø
Успенский В. А.
Действительно ли в математике всё определяется и доказывается? Можно ли определить понятие натурального числа? Можно ли определить Натуральный Ряд (с прописной буквы)? Можно ли аксиоматически определить понятие натурального ряда (со строчной буквы)? Можно ли доказать, что Великую теорему Ферма нельзя ни доказать, ни опровергнуть? Что такое доказательство? Можно ли математику сделать понятной?
Математика 0 Ø
Мартин Гарднер
Математические фокусы - очень своеобразная форма демонстрации математических закономерностей. Этой скрытой математичностью и интересна книга Мартина Гарднера - сам автор не формулирует на языке математики закономерностей, лежащих в основе его экспериментов, ограничиваясь описанием действий показывающего, явных и тайных. Но читателю, знакомому с элементами школьной алгебры и геометрии, несомненно, доставит удовольствие самому восстановить по объяснениям автора соответствующую алгебраическую или геометрическую идею. Книга будет интересна многим читателям: юным участникам математических кружков, взрослым любителям математики, а может быть, тот или иной из описанных здесь экспериментов пробудит улыбку и у серьезного ученого в краткий момент отдыха от большой работы.
Математика ≫ Книги 0 Ø
Александр Жданов
Верно ли понимать интеллект как совокупность рефлексов? Как устроен алгоритм работы мозга? Каким образом мы принимаем решения? О рефлексах, роли эмоциональной оценки ситуации и принципе накопления знаний рассказывает Александр Жданов, доктор физико-математических наук, главный научный сотрудник ОАО «Институт точной механики и вычислительной техники им. С. А. Лебедева Российской академии наук», профессор факультета радиотехники и кибернетики МФТИ.
Информатика, кибернетика, когнитивистика ≫ Видео 1 Korall8
2 Янв 2016 14:30:35 >>>
Норберт Винер
«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт». Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных. В центре — проблематика поведения и воспроизведения (естественного и искусственного) сложных управляющих и информационных систем в технике, живой природе и обществе. Автор глубоко озабочен судьбой науки и ученых в современном мире и резко осуждает использование научного могущества для эксплуатации и войны.
Информатика, кибернетика, когнитивистика ≫ Книги 0 Ø
Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
Математика ≫ Видео 0 Ø
Брайан Дэвис
На протяжении большей части XX столетия в «чистой» математике царило замечательное единодушие относительно того, как нужно представлять результаты. Весь предмет сводился к комплексу теорем, каждая из которых, в конечном счете, выводилась из фиксированного набора аксиом путем так называемого строгого логического доказательства. В отдельных разделах математики, таких, например, как арифметика Пеано, справедливость аксиоматики выглядела самоочевидной, однако во многих случаях аксиомы попросту очерчивали рассматриваемую область вопросов. Для математиков, если только они не выходили за рамки математики, выступая в роли философов-любителей, принципиального различия между изобретением и открытием новых концепций не было.
Математика 0 Ø
BBC Horizon
Профессор Оксфордского университета Маркус Дю Сотой является действительным членом Американского математического общества и работает с теорией групп и теорией чисел. У Алана Дейвиса в школе была тройка по математике, у Маркус Дю Сотой — крепкая пятерка с большим плюсом. Их объединяет только одно: они оба болеют за "Арсенал". Профессор Дю Сотой берется объяснить Алану Дейвису и широкой публике, как математика помогает нам понять окружающий мир. Он знакомит его и зрителей с математическими принципами, которые способны расширить сознание и изменить представление о реальности. Задания для Дейвиса будут усложняться, пока не будет задан главный вопрос, который изменит отношение Алана и зрителей к Вселенной.
Математика ≫ Видео 0 Ø
Этот фильм — первая серьезная попытка на телевидении разобраться, какие бури движут этим человеком и что именно он сделал для русской и мировой науки. А вывод, почему же Перельман не взял свой миллион, зритель уже сделает сам...
Математика ≫ Видео 0 Ø
Документальный фильм «Измерения» — это два часа математики, постепенно выводящие вас в четвёртое измерение.
Математика ≫ Видео 0 Ø
<<< |1|2|3|4|5|6|…|8| >>>