Scisne?

Ученые сфоткали распределение зарядов в молекуле

# 5 Июл 2013 18:56:51
SE

http://f3.s.qip.ru/fCiXF34t.jpg

Молекула нафталоцианина до (b) и после (c) переключения состояния таутомеризации. d – картина разности зарядов, полученная вычитанием c из b. e – расчётная асимметрия электрического поля свободной молекулы. В верхних частях рисунков наложены позиции отдельных атомов. Углерод, водород и азот — серый, белый и синие кружки соответственно. Масштабные линейки — 0,5 нм (фотографии Fabian Mohn et al./ Nature Nanotechnology).
Атомные микроскопы давно умеют получать фотографии атомов или молекул, но до сих людям не удавалось запечатлеть отчётливую картину расположения и передвижения зарядов внутри единичной молекулы. Для этого учёные использовали комбинацию разных методов съёмки.

Исследователи из лаборатории IBM в Цюрихе (IBM Research — Zurich) скрестили сканирующую туннельную, атомно-силовую и силовую микроскопию с зондом Кельвина (KPFM), благодаря чему измерили распределение электрических зарядов внутри молекулы нафталоцианина (naphthalocyanine, C48H26N8).

Нафталоцианин поместили на очень тонкий слой изолятора (NaCl), в свою очередь, лежащий на проводящей подложке из меди. Между подложкой и наконечником микроскопа — остриём в миллиардные доли метра — было приложено напряжение (комбинация переменного и постоянного).

Наконечник, подходящий к молекуле вплотную, но не касающийся её, образовал вместе с ней конденсатор. Его параметры зависели от расположения зарядов в той или иной точке образца.

Напряжение на наконечнике заставляло его вибрировать. И частота этой вибрации определялась не только параметрами приложенного напряжения и механическими свойствами консоли, но и разностью потенциалов на обкладках конденсатора, а фактически – расположением зарядов внутри исследуемой молекулы.

http://f4.s.qip.ru/fCiXF34r.jpg
Схема опыта. В каждой точке будущей картины (позиции измерения отмечены красным) физики получали кривую зависимости отклонения частоты вибрации консоли от величины электрического напряжения. Точка перегиба на графике позволяла высчитать электрический заряд в данной точке нафталоцианина. Все измерения проводились при температуре 5 кельвинов (илюстрация Fabian Mohn et al./ Nature Nanotechnology).
Экспериментаторы сообщают, что ранее подобным способом учёные уже измеряли локальную разницу контактных потенциалов для широкого спектра поверхностей, и даже выявляли состояния единичных атомов, выложенных на подложку, но до сих пор ещё не демонстрировали KPFM-изображения целых молекул с субмолекулярным разрешением.

По информации BBC News, таким методом учёные не только создали электрический портрет нафталоцианина, но и пронаблюдали, как тот меняется, если непосредственно к самой молекуле тоже приложить небольшое напряжение.

В такой ситуации внешний потенциал заставлял атомы водорода в центре X-образной молекулы поменяться местами (явление таутомеризации), что провоцировало перераспределение зарядов во всей молекуле. И это передвижение электронов учёные также успешно отсняли.

«Теперь возможно исследовать на уровне молекулы, как заряд перераспределяется, когда отдельные химические связи образуются между атомами и молекулами на поверхности, — говорит ведущий автор работы Фабиан Мон (Fabian Mohn). — Это важно, поскольку мы стремимся к созданию атомных и молекулярных устройств». (Детали эксперимента можно найти в статье в Nature Nanotechnology.)

MEMBRANA
Только зарегистрированные пользователи могут создавать сообщения.
Вход, Регистрация.